39,134 research outputs found

    Dynamical Response of Fermi Condensate to Varying Magnetic Fields

    Full text link
    We investigate the dynamical response of strongly interacting ultra-cold fermionic atoms near Feshbach resonance to varying magnetic fields. Following the experimental practices, we calculate the response of the atoms to oscillating and to linearly ramped magnetic fields respectively. For oscillating magnetic fields, depending on the frequencies and the amplitudes of the oscillations, the response of the pair excitation gap shows either linear or rich non-linear behaviour. In addition, both the spectral studies through the linear response theory and the time-domain simulations suggest the existence of a resonant frequency corresponding to the pair dissociation threshold. For linearly ramped magnetic fields, the response of the excitation gap shows damped oscillations. The final value of the excitation gap depends on the rate of the field sweep.Comment: 6 pages, 6 figure

    Regioselective Intermolecular Coupling Reaction of Arylketones and Alkenes Involving C-H Bond Activation Catalyzed by an \u3cem\u3ein Situ\u3c/em\u3e Formed Cationic Ruthenium-Hydride Complex

    Get PDF
    The cationic ruthenium hydride complex, formed in situ from the treatment of the tetranuclear ruthenium hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} with HBF4·OEt2, was found to be a highly effective catalyst for the intermolecular coupling reaction of arylketones and 1-alkenes to give the substituted indene and ortho-C−H insertion products. The formation of the indene products resulted from the initial alkene isomerization followed by regioselective ortho-C−H insertion of 2-alkene and dehydrative cyclization. The preliminary mechanistic studies revealed a rapid and reversible ortho-C−H bond activation followed by the rate-limiting C−C bond formation step for the coupling reaction

    Efficient Dehydrogenation of Amines and Carbonyl Compounds Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo-hydride Complex

    Get PDF
    The tetranuclear ruthenium-μ-oxo-μ-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly effective catalyst for the transfer dehydrogenation of amines and carbonyl compounds. For example, the initial turnover rate of the dehydrogenation of 2-methylindoline was measured to be 1.9 s−1 with a TON of 7950 after 1 h at 200 °C. The extensive H/D scrambling patterns observed from the dehydrogenation reaction of indoline-N-d1 and indoline-α-d2 suggest a monohydride mechanistic pathway with the C−H bond activation rate-limiting step
    • …
    corecore